Robust latent low rank representation for subspace clustering
نویسندگان
چکیده
Subspace clustering has found wide applications in machine learning, data mining, and computer vision. Latent Low Rank Representation (LatLRR) is one of the state-of-the-art methods for subspace clustering. However, its effectiveness is undermined by a recent discovery that the solution to the noiseless LatLRR model is non-unique. To remedy this issue, we propose choosing the sparest solution in the solution set. When there is noise, we further propose preprocessing the data with robust PCA. Experiments on both synthetic and real data demonstrate the advantage of our robust LatLRR over state-of-the-art methods. & 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Tensor Sparse and Low-Rank based Submodule Clustering Method for Multi-way Data
A new submodule clustering method via sparse and lowrank representation for multi-way data is proposed in this paper. Instead of reshaping multi-way data into vectors, this method maintains their natural orders to preserve data intrinsic structures, e.g., image data kept as matrices. To implement clustering, the multi-way data, viewed as tensors, are represented by the proposed tensor sparse an...
متن کاملSubspace clustering using a symmetric low-rank representation
In this paper, we propose a low-rank representation with symmetric constraint (LRRSC) method for robust subspace clustering. Given a collection of data points approximately drawn from multiple subspaces, the proposed technique can simultaneously recover the dimension and members of each subspace. LRRSC extends the original low-rank representation algorithm by integrating a symmetric constraint ...
متن کاملLearning Transformations for Clustering and Classification Learning Transformations for Clustering and Classification
A low-rank transformation learning framework for subspace clustering and classification is here proposed. Many high-dimensional data, such as face images and motion sequences, approximately lie in a union of low-dimensional subspaces. The corresponding subspace clustering problem has been extensively studied in the literature to partition such highdimensional data into clusters corresponding to...
متن کاملSymmetric low-rank representation for subspace clustering
We propose a symmetric low-rank representation (SLRR) method for subspace clustering, which assumes that a data set is approximately drawn from the union of multiple subspaces. The proposed technique can reveal the membership of multiple subspaces through the self-expressiveness property of the data. In particular, the SLRR method considers a collaborative representation combined with low-rank ...
متن کاملLaplacian regularized low rank subspace clustering
The problem of fitting a union of subspaces to a collection of data points drawn from multiple subspaces is considered in this paper. In the traditional low rank representation model, the dictionary used to represent the data points is chosen as the data points themselves and thus the dictionary is corrupted with noise. This problem is solved in the low rank subspace clustering model which deco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 145 شماره
صفحات -
تاریخ انتشار 2014